2

C51 Language extensions: Overview

C51 Language Extensions
2

8051 Memory Areas
2

8051 Memory Areas
2

Program Memory
2

Internal Data Memory
2

External Data Memory
3

Special Function Register Memory
3

8051 Memory Models
3

Memory Models
3

Small Model
3

Compact Model
4

Large Model
4

8051 Memory Type Specifiers
4

Memory Types
4

Implicit Memory Types
5

Variable Data Type Specifiers
5

Data Types
5

Bit Variables and Bit-addressable Data
6

Bit Types
6

Bit-Addressable Objects
6

Special Function Register
8

Special Function Registers
8

SFR
8

SFR16
8

sbit
9

Pointers
10

Pointers
10

Untyped Pointers
10

Typed Pointers
11

Pointer Conversions
11

Function Attributes
12

Function Attributes
12

Function Parameters and the Stack
13

Passing Parameters in Registers
13

Function Return Values
13

Interrupt Functions
14

Interrupt Functions
14

Using Attribute
16

Specifying the Register Bank for a Function
16

Register Bank Access
16

Memory Model for a Function
17

Specifying the Memory Model for a Function
17

Reentrant Function
17

Reentrant Functions
17

Real-Time Function Tasks
19

Real-Time Function Tasks
19

Overview

 C51 Language Extensions

 C51 provides a number of extensions to ANSI Standard C. Most of these

 provide direct support for elements of the 8051 architecture. C51 includes

 extensions for:

 - Memory Types and Areas

 - Memory Models

 - Memory Type Specifiers

 - Variable Data Type Specifiers

 - Bit variables and bit-addressable data

 - Special Function Registers

 - Pointers

 - Function Attributes

 You can disable these extensions using the NOEXTEND control directive.

8051 Memory Areas

 8051 Memory Areas

 The 8051 architecture supports a number of physically separate memory areas

 or memory spaces for program and data. Each memory area offers certain

 advantages and disadvantages. There are memory spaces that can be read from

 but not written to, memory spaces that can be read or written, and memory

 spaces that can be read or written more quickly than other memory spaces.

 Program Memory

 Program memory can be read only. It cannot be written to. Program memory

 may reside within the 8051 CPU, or it may be external, or it may be both,

 depending upon the 8051 derivative and the hardware design. There may be up

 to 64 KBytes of program memory. Program code including all functions and

 library routines are stored in program memory. Constant variables may be

 stored in program memory, as well. The 8051 executes programs stored in

 program memory only. Program memory can be accessed by using the code

 memory type specifier in C51.

 Internal Data Memory

 Internal data memory resides within the 8051 CPU and can be read and

 written. Up to 256 bytes of internal data memory are available depending on

 the 8051 derivative. The first 128 bytes of internal data memory are both

 directly addressable and indirectly addressable. The upper 128 bytes of

 data memory (from 0x80 to 0xFF) can be addressed only indirectly. There is

 also a 16 byte area starting at 20h that is bit-addressable.

 Access to internal data memory is very fast because it can be accessed using

 an 8-bit address. However, internal data memory is limited to a maximum of

 256 bytes.

 Internal data can be broken down into three distinct data types when using

 C51: data, idata, and bdata.

 The data memory specifier always refers to the first 128 bytes of internal

 data memory. Variables stored here are accessed using direct addressing.

 The idata memory specifier refers to all 256 bytes of internal data memory;

 however, this memory type specifier code is generated by indirect addressing

 which is slower than direct addressing.

 The bdata memory specifier refers to the 16 bytes of bit-addressable memory

 in the internal data area (20h to 2Fh). This memory type specifier allows

 you to declare data types that can also be accessed at the bit-level.

 External Data Memory

External data memory can be read and written and is physically located

external to the 8051 CPU. Access to external data is very slow when

compared to access to internal data. This is because external data memory

is accessed indirectly through the data pointer (DPTR) register which must

be loaded with a 16-bit address before accessing the external memory.

There may be up to 64 KBytes of external data memory; though, this address

space does not necessarily have to be used as memory. Your hardware design

may map peripheral devices into the memory space. If this is the case, your

program would access external data memory to program and control the

peripheral. This technique is referred to as memory-mapped I/O.

There are two different data types in C51 with which you may access external

data: xdata and pdata.

The xdata memory specifier refers to any location in the 64 KByte address

space of external data memory.

The pdata memory type specifier refers to only 1 page or 256 bytes of

external data memory. See the 'Compact Model' section under 'Memory

Models' later in this chapter for more information on pdata.

 Special Function Register Memory

 The 8051 also provides 128 bytes of memory for Special Function Registers

 (SFRs). SFRs are bit, byte, or word sized registers that are used to

 control timers, counters, serial I/O, port I/O, and peripherals. Refer to

 the 'Special Function Registers' section for more information on SFRs.

8051 Memory Models

 Memory Models

The memory model determines the default memory type to be used for function

arguments, automatic variables, and declarations with no explicit memory

type specifier. You specify the memory model on the C51 command line using

the SMALL, COMPACT, and LARGE control directives.

NOTE

 Except in very special selected applications, you should always use the

 default SMALL memory model. It will generate the fastest most efficient

 code.

By explicitly declaring a variable with a memory type specifier, you may

override the default memory type imposed by the memory model.

 Small Model

In this model, all variables, by default, reside in the internal data memory

of the 8051 system. In this memory model, variable access is very

efficient. However, all objects, as well as the stack must fit into the

internal RAM. Stack size is critical because the real stack size depends

upon the nesting depth of the various functions. Typically, if L51 is

configured to overlay variables in the internal data memory, the small model

is the best model to use.

 Compact Model

 Using the compact model, all variables, by default, reside in one page of

 external data memory. (This is as if they were explicitly declared using

 the pdata memory type specifier.) This memory model can accommodate a

 maximum of 256 bytes of variables. The limitation is due to the addressing

 scheme used, which is indirect through registers R0 and R1 (@R0, @R1). This

 memory model is not as efficient as the small model, therefore, variable

 access is not as fast. However, the compact model is faster than the large

 model.

 When using the compact model, C51 accesses external memory with instructions

 that utilize the @R0 and @R1 operands. R0 and R1 are byte registers and

 provide only the low-order byte of the address. If the compact model is

 used with more than 256 bytes of external memory, the high-order address

 byte (or page) is provided by Port 2 on the 8051. In this case, you must

 initialize Port 2 with the proper external memory page to use. This can be

 done in the startup code (STARTUP.A51). You must also specify the starting

 address for PDATA to the linker.

 Large Model

 In the large model, all variables, by default, reside in external data

 memory (up to 64 KBytes). (This is the same as if they were explicitly

 declared using the xdata memory type specifier.) The data pointer (DPTR)

 is used for addressing. Memory access through this data pointer is

 inefficient, especially on variables with a length of two or more bytes.

 This type of data access mechanism generates more code than the small or

 compact models.

8051 Memory Type Specifiers

 Memory Types

 The C51 compiler explicitly supports the architecture of the 8051 and its

 derivatives and provides access to all memory areas of the 8051. Each

 variable may be explicitly assigned to a specific memory space.

 Accessing the internal data memory is considerably faster than accessing the

 external data memory. For this reason, place frequently used variables in

 internal data memory. Place larger, less frequently used variables in

 external data memory.

 Explicitly Declared Memory Types

 By including a memory type specifier in the variable declaration, you may

 specify where variables are stored. The following table summarizes the

 available memory type specifiers.

 Memory Type Description

 code program memory (64 KBytes); accessed by opcode MOVC @A+DPTR

 data directly addressable internal data memory; fastest access to

 variables (128 bytes)

 idata indirectly addressable internal data memory; accessed across

 the full internal address space (256 bytes)

 bdata bit-addressable internal data memory; allows mixed bit and byte

 access (16 bytes or 128 bits)

 xdata external data memory (64 KBytes); accessed by opcode MOVX @DPTR

 pdata paged (256 bytes) external data memory; accessed by MOVX @Rn

 As with the signed and unsigned attributes, you may include memory type

 specifiers in the variable declaration. For example:

 char data var1;

 char code text[] = "ENTER PARAMETER:";

 unsigned long xdata array[100];

 float idata x;

 unsigned int pdata dimension;

 unsigned char xdata vector[10][4][4];

 char bdata flags;

NOTE

 C51 allows you to specify the memory type even before the type declarator.

 For this reason, the declaration data char x; is equivalent to the

 declaration char data x.

 Implicit Memory Types

If the memory type specifier is omitted in a variable declaration, the

default or implicit memory type is automatically selected. Function

arguments and automatic variables which cannot be located in registers are

also stored in the default memory area.

The default memory type is determined by the SMALL, COMPACT and LARGE

compiler control directives.

Variable Data Type Specifiers

 Data Types

 C51 provides you with a number of basic data types to use in your C

 programs. C51 offers you the standard C data types and also supports

 several data types that are unique to the 8051 platform. The following

 table lists the data types available in C51.

 Data Type Bits Bytes Value Range

 * bit 1 0 to 1

 signed char 8 1 -128 to +127

 unsigned char 8 1 0 to 255

 enum 16 2 -32768 to +32767

 signed short 16 2 -32768 to +32767

 unsigned short 16 2 0 to 65535

 signed int 16 2 -32768 to +32767

 unsigned int 16 2 0 to 65535

 signed long 32 4 -2147483648 to 2147483647

 unsigned long 32 4 0 to 4294967295

 float 32 4 +/-1.175494E-38 to +/-3.402823E+38

 * sbit 1 0 to 1

 * sfr 8 1 0 to 255

 * sfr16 16 2 0 to 65535

 * The bit, sbit, sfr, and sfr16 data types are not provided in ANSI C and

 are unique to C51. They are described in detail in the following

 sections.

Bit Variables and Bit-addressable Data

 Bit Types

 C51 provides you with a bit data type which may be used for variable

 declarations, argument lists, and function return values. A bit variable

 is declared just as other C data types are declared. For example:

 bit done_flag = 0; /* bit variable */

 bit testfunc (/* bit function */

 bit flag1, /* bit arguments */

 bit flag2)

 {

 ...

 return (0); /* bit return value */

 }

 All bit variables are stored in a bit segment located in the internal memory

 area of the 8051. Because this area is only 16 bytes long, a maximum of 128

 bit variables may be declared within any one scope.

 The following restrictions apply to bit variables and bit declarations:

 - Functions which use disabled interrupts (#pragma disable) and functions

 that are declared using an explicit register bank (using n) cannot return

 a bit value. The C51 compiler generates an error message for functions

 of this type that attempt to return a bit type.

 - A bit cannot be declared as a pointer. For example:

 bit *ptr

 - An array of type bit is invalid. For example:

 bit ware [5]
 Bit-Addressable Objects

 Bit-addressable objects are objects which can be addressed as bytes or as

 bits. Only data objects that occupy the bit-addressable area of the 8051

 internal memory fall into this category. The C51 compiler places variables

 declared with the bdata memory type into this bit-addressable area. You may

 declare these variables as shown below:

 int bdata ibase; /* Bit-addressable int */

 char bdata bary [4]; /* Bit-addressable array */

The variables ibase and bary are bit-addressable. Therefore, the

individual bits of these variables may be directly accessed and modified.

To do this, use the sbit keyword to declare new variables that access the

bits of variables declared using bdata. For example:

 sbit mybit0 = ibase ^ 0; /* bit 0 of ibase */

 sbit mybit15 = ibase ^ 15; /* bit 15 of ibase */

 sbit Ary07 = bary[0] ^ 7; /* bit 7 of bary[0] */

 sbit Ary37 = bary[3] ^ 7; /* bit 7 of bary[3] */

The above example represents declarations, not assignments to the bits of

the ibase and bary variables declared above. The expression following

the carat symbol (^) in the example, specifies the position of the bit to

access with this declaration. This expression must be a constant value.

The range depends on the type of the base variable included in the

declaration. The range is 0 to 7 for char and unsigned char, 0 to 15 for

int, unsigned int, short, and unsigned short, and 0 to 31 for long and

unsigned long.

You may provide external variable declarations for the sbit type to access

these types in other modules. For example:

 extern sbit mybit0; /* bit 0 of ibase */

 extern sbit mybit15; /* bit 15 of ibase */

 extern sbit Ary07; /* bit 7 of bary[0] */

 extern sbit Ary37; /* bit 7 of bary[3] */

Declarations involving the sbit type require that the base object be

declared with the memory type bdata. The only exception to this are the

variants for special function bits as discussed in the section entitled

'Special Function Registers' later in this chapter.

The following example shows how to change the bits of ibase and bary using

the above declarations.

 Ary37 = 0; /* clear bit 7 in bary[3] */

 bary[3] = 'a'; /* Byte addressing */

 ibase = -1; /* Word addressing */

 mybit15 = 1; /* set bit 15 ibase */

The bdata memory type is handled like the data memory type except that

variables declared with bdata reside in the bit-addressable portion of the

internal data memory. Note that the total size of this area of memory may

not exceed 16 bytes.

In addition to declaring sbit variables for scalar types, you may also

declare sbit variables for structures and unions. For example:

 union lft {

 float mf;

 long ml;

 };

 bdata struct bad {

 char m1;

 union lft u;

 } tcp;

 sbit tcpf31 = tcp.u.ml ^ 31; /* bit 31 of float */

 sbit tcpm10 = tcp.m1 ^ 0;

 sbit tcpm17 = tcp.m1 ^ 7;

NOTES

You may not specify bit variables for the bit positions of a float.

However, you may include the float and a long in a union. Then, you may

declare bit variables to access the bits in the long type.

The sbit data type uses the specified variable as a base address and adds

the bit position to obtain a physical bit address. Physical bit addresses

are not equivalent to logical bit positions for certain data types.

Physical bit position 0 refers to bit position 0 of the first byte.

Physical bit position 8 refers to bit position 0 of the second byte. Since

int variables are stored high-byte first, bit 0 of the integer is located in

bit position 0 of the second byte. This is physical bit position 8 when

accessed using an sbit data type.

Special Function Register

 Special Function Registers

 The 8051 family of microprocessors provides a distinct memory area for

 accessing Special Function Registers (SFRs). SFRs are used in your program

 to control timers, counters, serial I/Os, port I/Os, and peripherals. SFRs

 reside from address 0x80 to 0xFF and can be accessed as bits, bytes, and

 words. For more information about special function registers, refer to the

 Intel 8-Bit Embedded Controllers handbook or other 8051 data books.

 Within the 8051 family, the number and type of SFRs vary. Note that no SFR

 names are predefined by the C51 compiler. However, declarations for SFRs

 are provided in include files.

 C51 provides a number of include files for various 8051 derivatives. Each

 file contains declarations for the SFRs available on that derivative. See

 the section entitled, '8051 Special Function Register Include Files' in the

 'Library Reference' chapter for more information about include files.

 C51 provides access to SFRs with the sfr, sfr16, and sbit data types. The

 following sections describe each of these data types.

 SFR

 SFRs are declared in the same fashion as other C variables. The only

 difference is that the data type specified is sfr rather than char or int.

 For example:

 sfr P0 = 0x80; /* Port-0, address 80h */

 sfr P1 = 0x90; /* Port-1, address 90h */

 sfr P2 = 0xA0; /* Port-2, address 0A0h */

 sfr P3 = 0xB0; /* Port-3, address 0B0h */

 P0, P1, P2, and P3 are the SFR name declarations. Names for sfr

 variables are defined just like other C variable declarations. Any symbolic

 name may be used in an sfr declaration.

 The address specification after the equal sign (=) must be a numeric

 constant. (Expressions with operators are not allowed.) This constant

 expression must lie in the SFR address range (0x80 to 0xFF).

 SFR16

 Many of the newer 8051 derivatives use two SFRs with consecutive addresses

 to specify 16-bit values. For example, the 8052 uses addresses 0xCC and

 0xCD for the low and high bytes of timer/counter 2. C51 provides the sfr16

 data type to access 2 SFRs as a 16-bit SFR.

 Access to 16-bit Special Function Registers is possible only when the low

 byte immediately precedes the high byte. The low byte is used as the

 address in the sfr16 declaration. For example:

 sfr16 T2 = 0xCC; /* Timer 2: T2L 0CCh, T2H 0CDh */

 sfr16 RCAP2 = 0xCA; /* RCAP2L 0CAh, RCAP2H 0CBh */

 In this example, T2 and RCAP2 are declared as 16-bit special function

 registers. The sfr16 declarations follow the same rules as outlined for

 sfr declarations. Any symbolic name can be used in an sfr16 declaration.

 The address specification after the equal sign (=) must be a numeric

 constant. Expressions with operators are not allowed. The address must be

 the low byte of the SFR low-byte, high-byte pair.

 sbit

 With typical 8051 applications, it is often necessary to access individual

 bits within an SFR. The C51 compiler makes this possible with the sbit

 data type. The sbit data type allows you to access bit-addressable SFRs.

 For example:

 sbit EA = 0xAF;

 This declaration defines EA to be the SFR bit at address 0xAF. On the 8051,

 this is the enable all bit in the interrupt enable register.

 NOTE

 Not all SFRs are bit-addressable. Only those SFRs whose address is

 evenly divisible by 8 are bit-addressable. These SFR's lower nibble will

 be either 0 or 8; for example, SFRs at 0xA8 and 0xD0 are bit-addressable,

 whereas SFRs at 0xC7 and 0xEB are not. SFR bit addresses are easy to

 calculate. Add the bit position to the SFR byte address to get the SFR

 bit address. So, to access bit 6 in the SFR at 0xC8, the SFR bit address

 would be 0xCE (0xC8 + 6).

 Any symbolic name can be used in an sbit declaration. The expression to the

 right of the equal sign (=) specifies an absolute bit address for the

 symbolic name. There are three variants for specifying the address.

* Variant 1: sfr_name ^ int_constant

This variant uses a previously-declared sfr (sfr_name) as the base address

 for the sbit. The address of the existing SFR must be evenly divisible by

 8. The expression following the carat symbol (^) specifies the position

 of the bit to access with this declaration. The bit position must be a

 number in the range 0 to 7. For example:

 sfr PSW = 0xD0;

sfr IE = 0xA8;

 sbit OV = PSW ^ 2;

 sbit CY = PSW ^ 7;

 sbit EA = IE ^ 7;

* Variant 2: int_constant ^ int_constant

 This variant uses an integer constant as the base address for the sbit.

 The base address value must be evenly divisible by 8. The expression

 following the carat symbol (^) specifies the position of the bit to access

 with this declaration. The bit position must be a number in the range 0

 to 7. For example:

 sbit OV = 0xD0 ^ 2;

 sbit CY = 0xD0 ^ 7;

 sbit EA = 0xA8 ^ 7;

* Variant 3: int_constant

This variant uses an absolute bit address for the sbit. For example:

 sbit OV = 0xD2;

 sbit CY = 0xD7;

 sbit EA = 0xAF;

 NOTES

 Special function bits represent an independent declaration class that may

 not be interchanged with other bit declarations or bit fields.

 The sbit data type declaration may be used to access individual bits of

 variables declared with the bdata memory type specifier. See the section

 entitled 'Bit-Addressable Objects' in this chapter.

Pointers

 Pointers

 C51 supports the declaration of variable pointers using the * character.

 C51 pointers can be used to perform all operations available in standard C.

 However, because of the unique architecture of the 8051 and its derivatives,

 C51 provides two different types of pointers: typed pointers and untyped

 pointers. Each of these pointer types, as well as conversion methods are

 discussed in the following sections.

 Untyped Pointers

 Untyped pointers are declared in the same fashion as standard C pointers.

 For example:

 char *s; /* string ptr */

 int *numptr; /* int ptr */

 long *state; /* Texas */

 Untyped pointers are always stored using three bytes. The first byte is for

 the memory type, the second is for the high-order byte of the offset, and

 the third is for the low-order byte of the offset. The following table

 contains the memory type byte values and their associated memory type.

 Memory Type idata xdata pdata data,bdata code

 --

 Value 1 2 3 4 5

 Untyped pointers may be used to access any variable regardless of its

 location in 8051 memory space. Many of the C51 library routines use these

 pointer types for this reason. By using these generic untyped pointers, a

 function can access data regardless of the memory in which it is stored.

 char *c_ptr;

 char data cd;

 char xdata cx;

 char code cc;

 void main (void) {

 *c_ptr = &cd;

 *c_ptr = &cx;

 *c_ptr = &cx;

 }

 In the above example, the untyped pointer c_ptr is all stored in the

 internal data memory of the 8051 when using the small memory model.

 However, you may specify the memory area in which an untyped pointer is

 stored by using a memory type specifier. For example:

 char * xdata strptr; /* untyped ptr stored in xdata */

 int * data numptr; /* untyped ptr stored in data */

 long * idata varptr; /* untyped ptr stored in idata */

 These examples are pointers to variables that may be stored in any memory

 area. The pointers, however, are stored in xdata, data, and idata

 respectively.

 Typed Pointers

 Typed pointers always include a memory type specification in the pointer

 declaration and always refer to a specific memory area. For example:

 char data *str; /* ptr to string in data */

 int xdata *numtab; /* ptr to int(s) in xdata */

 long code *powtab; /* ptr to long(s) in code */

Because the memory type is specified at compile-time, the memory type byte

required by untyped pointers is not needed by typed pointers. Typed

pointers can be stored using only one byte (idata, data, bdata, and pdata

pointers) or two bytes (code and xdata pointers).

Like untyped pointers, you may specify the memory area in which a typed

pointer is stored. To do so, prefix the pointer declaration with a memory

type specifier. For example:

 char data * xdata str; /* ptr in xdata to data char */

 int xdata * data numtab; /* ptr in data to xdata int */

 long code * idata powtab; /* ptr in idata to code long */

Typed pointers may be used to access variables in the declared 8051 memory

area only. Typed pointers provide the most efficient method of accessing

data objects, but at the cost of reduced flexibility.

The following example shows how pointer values are assigned to typed

pointers. Note that the code generated for these pointers is much less

involved than the code generated when untyped pointers are used.

 char data *c_ptr; /* typed char ptr to data */

 char data cd;

 char xdata cx;

 char code cc;

 void main (void) {

 *c_ptr = &cd;

 c_ptr = &cx; / *** WARNING 259: pointer: different mspace */

 c_ptr = &cx; / *** WARNING 259: pointer: different mspace */

 }
 Pointer Conversions

 C51 can convert between typed pointers and untyped pointers. Pointer

 conversions can be forced by explicit program code using type casts or can

 be coerced by the compiler.

 NOTE

 A typed pointer used as an argument to a function is always converted into

 an untyped pointer if no function prototype is present. This can cause

 errors if the called function actually expects a shorter pointer as an

 argument. In order to avoid these kinds of errors in programs, use

 #include files and prototype all external functions.

 The following table details the process involved in converting untyped

 pointers (untyped *) to typed pointers (code *, xdata *, idata *, data *,

 pdata *).

 Conversion Type
Description

 untyped * to code *
The offset section of the untyped pointer is used.

 untyped * to xdata *
The offset section of the untyped pointer is used.

 untyped * to idata *
The low-order byte of the untyped pointer offset is

used. The high-order byte is discarded.

 untyped * to data *
The low-order byte of the untyped pointer offset is

used. The high-order byte is discarded.

 untyped * to pdata *
The low-order byte of the untyped pointer offset is

 used. The high-order byte is discarded.

 The following table describes the process involved in converting typed

 pointers (code *, xdata *, idata *, data *, pdata *) to untyped pointers

 (untyped *).

 Conversion Type
Description

 xdata * to untyped *
The memory type of the untyped pointer is set to 2 for

xdata. The 2-byte offset of the xdata * is used.

 code * to untyped *
The memory type of the untyped pointer is set to 5 for

code. The 2-byte offset of the code * is used.

 idata * to untyped *
The memory type of the untyped pointer is set to 1 for

idata. The 1-byte offset of the idata * is converted

to an unsigned int and used as the offset.

 data * to untyped *
The memory type of the untyped pointer is set to 4 for

data. The 1-byte offset of the data * is converted to

an unsigned int and used as the offset.

 pdata * to untyped *
The memory type of the untyped pointer is set to 3 for

pdata. The 1-byte offset of the pdata * is converted

to an unsigned int and used as the offset.

Function Attributes

 Function Attributes

 C51 provides you with a number of extensions for standard C function

 declarations. These extensions allow you to:

 - Specify a function as an interrupt procedure

 - Choose the register bank used (using)

 - Select the memory model

 - Specify reentrant attribut.

 - Specify a function as a _task_.

 You include these extensions or attributes (many of which may be combined)

 in the function declaration. Use the following standard format for your C51

 function declarations.

 [return_type] funcname ([args]) [{ small | compact | large }]

 [reentrant] [interrupt n] [using n]

 where:

 return_type is the type of the value returned from the

 function. If no type is specified, int is assumed.

 funcname is the name of the function.

 args is the argument list for the function.

 small, compact, or large is the explicit memory model for the function.

 reentrant indicates that the function is recursive or

 reentrant.

 interrupt indicates that the function is an interrupt

 function.

 using specifies which register bank the function uses.

 Descriptions of these attributes and other features are described in detail

 in the following sections.

 Function Parameters and the Stack

 The stack pointer on the 8051 accesses internal data memory only. C51

 locates the stack area immediately following all variables in the internal

 data memory. The stack pointer accesses internal memory indirectly and can

 use all of the internal data memory up to the 0xFF limit.

 The total stack space is quite limited: only 256 bytes maximum. Rather

 than consume stack space with function parameters or arguments, C51 assigns

 a fixed memory location for each function parameter. When a function is

 called, the caller must copy the arguments into the assigned memory locations

 before transferring control to the desired function. The function then

 extracts its parameters, as needed, from these fixed memory locations. Only

 the return address is stored on the stack during this process. Interrupt

 functions require more stack space because they must switch register banks

 and save the values of a few registers on the stack.

 Optionally, the C51 compiler can pass up to three function arguments in

 registers. This enhances speed performance.

 Passing Parameters in Registers

 C51 allows up to three function arguments to be passed in CPU registers.

 This mechanism significantly improves system performance as arguments do not

 have to be written to and read from memory. Argument or parameter passing

 can be controlled by the REGPARMS and NOREGPARMS control directives defined

 in the previous chapter.

 The following table details the registers used for different argument

 positions and data types.

 Argument char, int, long, untyped

 Number 1-byte ptr 2-byte ptr float ptr

 --

 1 R7 R6 & R7 R4 - R7 R1 - R3

 2 R5 R4 & R5 R4 - R7 R1 - R3

 3 R3 R2 & R3 R1 - R3

 If no registers are available for argument passing, fixed memory locations

 are used for function parameters.

 Function Return Values

 CPU registers are always used for function return values. The following

 table lists the return types and the registers used for each.

 Return Type Register Description

 --

 bit Carry Flag

 char, unsigned char, 1-byte ptr R7

 int, unsigned int, 2-byte ptr R6 & R7 MSB in R6, LSB in R7

 long, unsigned long R4 - R7 MSB in R4, LSB in R7

 float R4 - R7 32-Bit IEEE format

 untyped ptr R1 - R3 Memory type in R3, MSB R2,

 LSB R1

 NOTE

 If the first parameter of a function is of type bit, other parameters are

 not passed in registers. This is because the parameters that can be

 passed in registers are out of sequence with the numbering scheme shown

 above. For this reason, bit parameters should be declared at the end of

 the argument list.

Interrupt Functions

 Interrupt Functions

 The 8051 and its derivatives provide a number of hardware interrupts that

 may be used for counting, timing, detecting external events, and sending

 and receiving data using the serial interface. The standard interrupts

 found on an 8051 are listed in the following table:

 Interrupt Number Interrupt Description Address

 0 EXTERNAL 0 0003h

 1 TIMER/COUNTER 0 000Bh

 2 EXTERNAL 1 0013h

 3 TIMER/COUNTER 1 001Bh

 4 SERIAL PORT 0023h

 The interrupt vector address is calculated as follows:

 Vector_Address = (Interrupt_Number * 8) + 3

 The C51 compiler provides you with a method of calling a C function when an

 interrupt occurs. This support allows you to create interrupt service

 routines in C. You need only be concerned with the interrupt number and

 register bank selection. The compiler automatically generates the interrupt

 vector and entry and exit code for the interrupt routine. The interrupt

 function attribute, when included in a declaration, specifies that the

 associated function is an interrupt function. For example:

 unsigned int interruptcnt;

 unsigned char second;

 void timer0 (void) interrupt 1 using 2 {

 if (++interruptcnt == 4000) { /* count to 4000 */

 second++; /* second counter */

 interruptcnt = 0; /* clear int counter */

 }

 }

 The interrupt attribute takes as an argument an integer constant in the

 value range 0 to 31. Expressions with operators are not allowed, and the

 interrupt attribute is not allowed in function prototypes. The interrupt

 attribute affects the object code of the function as follows:

 - The contents of the Special Function Registers ACC, B, DPH, DPL, and PSW,

 when required, are saved on the stack at the function invocation time.

 - All working registers that are used in the interrupt function are stored

 on the stack if a register bank is not specified with the using attribute.

 - The working registers and special registers that were saved on the stack

 are restored before exiting the function.

 - The function is terminated by the 8051 RETI instruction.

 The following rules apply to interrupt functions.

 - No function arguments may be specified for an interrupt function. The

 compiler emits an error message if an interrupt function is declared with

 any arguments.

 - Interrupt function declarations may not include a return value. They

 must be declared as void (see the above examples). The compiler emits an

 error message if any attempt is made to define a return value for the

 interrupt function.

 - The compiler recognizes direct invocations of interrupt functions and

 summarily rejects them. It is pointless to invoke interrupt procedures

 directly, because exiting the procedure causes execution of the RETI

 instruction which will affect the hardware interrupt system of the 8051

 chip. Because no interrupt request on the part of the hardware existed,

 the effect of this instruction is indeterminate and usually fatal. Do

 not call an interrupt function indirectly through a function pointer.

 - The compiler generates an interrupt vector for each interrupt function.

 The code generated for the vector is a jump to the beginning of the

 interrupt function. Generation of interrupt vectors can be suppressed by

 including the NOINTVECTOR control directive in the C51 command line. In

 this case, you must provide interrupt vectors from separate assembly

 modules. Refer to the INTVECTOR and INTERVAL control directives for more

 information about the interrupt vector table.

 - The C51 compiler allows interrupt numbers within the range 0 to 31.

 Refer to your 8051 derivative document to determine which interrupts are

 available.

- If floating-point operations are executed in the interrupt program, the

 state of the floating-point register routines must be saved. Saving

 these registers is not necessary when no other program sections execute

 floating-point operations. You may use the fpsave and fprestore routines

 from the C51 standard library to save and restore the floating-point

 state. For example:

 #include <math.h>

 struct FPBUF intsave;

 float x, y, z;

 void intfunc (void) interrupt 1 using 2 {

 fpsave (&intsave);

 x = y * z;

 fprestore (&intsave);

 }

 Functions that are invoked from an interrupt procedure must function with

 the same register bank as the interrupt procedure. When the NOAREGS

 directive is not explicitly specified, the compiler may generate absolute

 register accesses using the register bank selected for that function (by the

 using attribute or by the REGISTERBANK control). Unpredictable results may

 occur when a function assumes a different register bank than the one

 currently selected. See the section entitled, 'Register Bank Access',

 earlier in this chapter for more information.

Using Attribute

 Specifying the Register Bank for a Function

The lowest 32 bytes of all members of the 8051 family are grouped into 4

banks of 8 registers each. Programs can access these registers as R0

through R7. The register bank is selected by two bits of the program

status word (PSW). Register banks are useful when processing interrupts

or when using a real-time operating system. Rather than saving the 8

registers, the CPU can switch to a different register bank for the duration

of the interrupt service routine.

The using function attribute is used to specify which register bank a

function uses. For example:

void rb_function (void) using 3 {

 ...

}

The using attribute takes as an argument an integer constant in the value

range 0 to 3. Expressions with operators are not allowed, and the using

attribute is not allowed in function prototypes. The using attribute

affects the object code of the function as follows:

 - The currently selected register bank is saved on the stack at function

 entry.

 - The specified register bank is set.

 - The former register bank is restored before the function is exited.

 The using attribute should not be used in functions that return a value in

 registers. You must exercise extreme care to ensure that register bank

 switches are performed only in carefully controlled areas. Failure to do

 so will yield incorrect function results. Even when you use the same

 register bank, functions declared with the using attribute cannot return a

 bit value.

 Typically, the using attribute is most useful in functions that also specify

 the interrupt attribute. It is most common to specify a different register

 bank for each interrupt priority level. Therefore, you could use one

 register bank for all non-interrupt code, one for the high level interrupt,

 and one for the low level interrupt.

 Register Bank Access

 The C51 compiler allows you to define the default register bank in a

 function. The REGISTERBANK control directive allows you to specify the

 default register bank to use for all functions in a source file. This

 directive, however, does not generate code to switch the register bank.

 Upon reset, the 8051 loads the PSW with 00h which selects register bank 0.

 By default, all non-interrupt functions use register bank 0. To change this,

 you must:

 - Modify the startup code to select a different register bank

 - Specify the REGISTERBANK control directive along with the new register

 bank number.

 By default, the C51 compiler generates code that accesses the registers

 R0-R7 using absolute addresses. This is done for maximum performance.

 Absolute register accesses are controlled by the AREGS and NOAREGS control

 directives. Functions which employ absolute register accesses must not be

 called from another function that uses a different register bank. Doing so

 causes unpredictable results because the called function assumes a different

 register bank is selected. To make a function insensitive to the current

 register bank, the function must be compiled using the NOAREGS control

 directive. This would be useful for a function that was called from the

 main program and also from an interrupt function that uses a different

 register bank.

 NOTE

 The C51 compiler does not and cannot detect a register bank mismatch between

 functions. Therefore, make sure that functions using alternate register

 banks call only other functions that do not assume a default register bank.

Memory Model for a Function

 Specifying the Memory Model for a Function

 C51 Functions normally use the default memory model to determine which

 memory space to use for function arguments and local variables. See the

 'Memory Model' section above for more information about memory models.

 You may, however, specify which memory model to use for a single function

 by including the small, compact, or large function attribute in the function

 declaration. For example:

 #pragma small /* Default to small model */

 extern int calc (char i, int b) large reentrant;

 extern int func (int i, float f) large;

 extern void *tcp (char xdata *xp, int ndx) small;

 int mtest (int i, int y) { /* Small model */

 return (i * y + y * i + func(-1, 4.75));

 }

 int large_func (int i, int k) large { /* Large model */

 return (mtest (i, k) + 2);

 }
Reentrant Function

 Reentrant Functions

 A reentrant function can be shared by several processes at the same time.

 When a reentrant function is executing, another process can interrupt the

 execution and then begin to execute that same reentrant function. Normally,

 functions in C51 cannot be called recursively or in a fashion which causes

 reentrancy. The reason for this limitation is that function arguments and

 local variables are stored in fixed memory locations. The reentrant

 function attribute allows you to declare functions that may be reentrant

 and, therefore, may be called recursively. For example:

 int calc (char i, int b) reentrant {

 int x;

 x = table [i];

 return (x * b);

 }

 Reentrant functions can be called recursively and can be called

 'simultaneously' by two or more processes. Reentrant functions are often

 required in real-time applications or in situations where interrupt code and

 non-interrupt code must share a function.

 As in the above example, you may selectively define (using the reentrant

 attribute) functions as being reentrant. For each reentrant function, a

 reentrant stack area is simulated in internal or external memory depending

 on the memory model as follows:

 - Small Model reentrant functions simulate the reentrant stack in idata

 memory.

 - Compact Model reentrant functions simulate the reentrant stack in pdata

 memory.

 - Large Model reentrant function simulate the reentrant stack in xdata

 memory.

 Reentrant functions use the default memory model to determine which memory

 space to use for the reentrant stack. You may specify (with the small,

 compact, and large function attributes) which memory model to use for a

 function. The following rules apply to functions declared with the

 reentrant attribute.

 - bit type function arguments may not be used. Local bit scalars are also

 not available. The reentrant capability does not support bit-addressable

 variables.

 - Reentrant functions must not be called from alien functions.

 - Reentrant function cannot use the alien attribute specifier to enable

 PL/M-51 argument passing conventions.

 - A reentrant function may simultaneously have other attributes like using

 and interrupt and may include an explicit memory model attribute (small,

 compact, large).

 - Return addresses are stored in the 8051 hardware stack. Any other

 required PUSH and POP operations also affect the 8051 hardware stack.

 - Reentrant functions using different memory models may be intermixed.

 However, each reentrant function must be properly prototyped and must

 include its memory model attribute in the prototype. This is necessary

 for calling routines to place the function arguments in the proper

 reentrant stack.

 - Each of the three possible reentrant models contains its own reentrant

 stack area and stack pointer. For example, if small and large reentrant

 functions are declared in a module, both small and large reentrant stacks

 are created along with two associated stack pointers (one for small and

 one for large).

The reentrant stack simulation architecture is inefficient, but necessary

due to a lack of suitable addressing methods available on the 8051. For

this reason, reentrant functions should be used sparingly.

The simulated stack used by reentrant functions has its own stack pointer

which is independent of the 8051 stack and stack pointer. The stack and

stack pointer are defined and initialized in the file STARTUP.A51. The

following table details the stack pointer assembler variable name, data area,

and size for each of the three memory models.

Model Stack Pointer Stack Area

SMALL ?C_IBP (1 Byte) Indirectly accessible internal memory (idata).

 256 bytes max. stack area.

COMPACT ?C_PBP (1 Byte) Page-addressable external memory (pdata). 256

 bytes max. stack area.

LARGE ?C_XBP (2 Bytes) Externally accessible memory (xdata). 64 KBytes

 max. stack area.

 The simulated stack area for reentrant functions is organized from top to

 bottom. The 8051 hardware stack is implemented just the opposite and is

 organized bottom to top. When using the SMALL memory model, both the

 simulated stack and the 8051 hardware stack share the same memory area but

 from opposite directions.

 The simulated stack and stack pointers are declared and initialized in the

 C51 startup code in STARTUP.A51 which can be found in the \C51\LIB

 subdirectory. You must modify the startup code to specify which simulated

 stack(s) to initialize in order to use reentrant functions. You can also

 modify the starting address for the top of the simulated stack(s) in the

 startup code. Refer to the section entitled 'STARTUP.A51' in the

 'Customization Files' chapter for more information on reentrant function

 stack areas.

Real-Time Function Tasks

 Real-Time Function Tasks

 C51 internally provides support for the RTX51 and RTX51 Tiny real-time

 multitasking operating systems. The _task_ keyword allows you to define a

 function as a real-time task. For example:

 void test_task (void) _task_ num

 where num is a task ID number from 0 to 255 for RTX51 or 0 to 15 for RTX51

 Tiny. Task functions must be declared with a void return type and a void

 argument list.

